4 research outputs found

    A problem-structuring model for analyzing transportation–environment relationships

    Get PDF
    This is the post-print version of the final paper published in European Journal of Operational Research. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2009 Elsevier B.V.This study discusses a decision support framework that guides policy makers in their strategic transportation related decisions by using multi-methodology. For this purpose, a methodology for analyzing the effects of transportation policies on environment, society, economy, and energy is proposed. In the proposed methodology, a three-stage problem structuring model is developed. Initially, experts’ opinions are structured by using a cognitive map to determine the relationships between transportation and environmental concepts. Then a structural equation model (SEM) is constructed, based on the cognitive map, to quantify the relations among external transportation and environmental factors. Finally the results of the SEM model are used to evaluate the consequences of possible policies via scenario analysis. In this paper a pilot study that covers only one module of the whole framework, namely transportation–environment interaction module, is conducted to present the applicability and usefulness of the methodology. This pilot study also reveals the impacts of transportation policies on the environment. To achieve a sustainable transportation system, the extent of the relationships between transportation and the environment must be considered. The World Development Indicators developed by the World Bank are used for this purpose

    A new perspective on the competitiveness of nations

    Get PDF
    The capability of firms to survive and to have a competitive advantage in global markets depends on, amongst other things, the efficiency of public institutions, the excellence of educational, health and communications infrastructures, as well as on the political and economic stability of their home country. The measurement of competitiveness and strategy development is thus an important issue for policy-makers. Despite many attempts to provide objectivity in the development of measures of national competitiveness, there are inherently subjective judgments that involve, for example, how data sets are aggregated and importance weights are applied. Generally, either equal weighting is assumed in calculating a final index, or subjective weights are specified. The same problem also occurs in the subjective assignment of countries to different clusters. Developed as such, the value of these type indices may be questioned by users. The aim of this paper is to explore methodological transparency as a viable solution to problems created by existing aggregated indices. For this purpose, a methodology composed of three steps is proposed. To start, a hierarchical clustering analysis is used to assign countries to appropriate clusters. In current methods, country clustering is generally based on GDP. However, we suggest that GDP alone is insufficient for purposes of country clustering. In the proposed methodology, 178 criteria are used for this purpose. Next, relationships between the criteria and classification of the countries are determined using artificial neural networks (ANNs). ANN provides an objective method for determining the attribute/criteria weights, which are, for the most part, subjectively specified in existing methods. Finally, in our third step, the countries of interest are ranked based on weights generated in the previous step. Beyond the ranking of countries, the proposed methodology can also be used to identify those attributes that a given country should focus on in order to improve its position relative to other countries, i.e., to transition from its current cluster to the next higher one
    corecore